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A recently proposed nearest neighbor based selection of time delays for phase space reconstruction is
extended to multivariate time series, with an iterative selection of variables and time delays. A case study of
numerically generated solutions of the x- and z coordinates of the Lorenz system, and an application to heart
rate and respiration data, are used for illustration.
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Phase space reconstruction by time delay embedding is at
the center of most nonlinear time series analysis methods
�see Refs. �1,2� for an introduction�. It is a primal goal as it
ensures, under certain generic conditions, the reconstruction
of a phase space equivalent to the original one, thus allowing
a qualitative and quantitative analysis of the underlying dy-
namical system. The most commonly used embedding tech-
niques are based on Takens’s embedding theorem �3�, which
only considers delay-coordinate maps built from a single ob-
servable, that is, a scalar time series �3,4�. Despite the wide-
spread use and paramount importance of this embedding
theorem, it can be extremely difficult to reconstruct a phase
space from a scalar time series when more than a couple
degrees of freedom are active �5�, which is the common
scenario when analyzing biological systems due to the com-
plexity of their structures and complicated dynamics. The
motivation for this study is the increasing interest in reverse-
engineering biological systems directly from time series �see
Ref. �6� for example�, whose typical multivariate, finite, and
noisy nature renders it particularly important to develop ef-
ficient multivariate embedding schemes �7�.

Generically consider a smooth deterministic dynamical
system s�t�= f(s�t0�), either in continuous or discrete time,
whose trajectories are asymptotic to a compact
d-dimensional manifold. By performing k-dimensional mea-
surements on the system, where k=1, . . . ,d, it is possible to
define a function x�i�=h�s�t= i���� that relates the states of
the dynamical system throughout time with a time series of
measured points, where x�i��Rk, i=1, . . . ,n; n is the total
number of sampled points, and � is the sampling time. Phase
space reconstruction by time delay embedding is a method of
generating an m-dimensional manifold, from the �n�k�
available measurements, that is equivalent to the original
d-dimensional manifold. In the scalar scenario, that is, for
k=1, an m-dimensional embedding matrix of delay-
coordinate column vectors can be defined from the initial
time series x�i�, as X= �x�i� ,x�i+�1� ,x�i+�2� , . . . ,x�i+��m−1��

�.

Building such a matrix implies estimating two parameters:
the time delay �, which is the time displacement between
successive columns, and the embedding dimension m, which
is the dimension, or number of columns, of the final embed-
ding matrix. We have recently proposed �8� a nearest neigh-
bor measure N for time delay embedding, solely based on
topological and dynamical arguments documented by the
data. This measure possesses the useful feature of retaining
the inverse relationship with structure disclosure, meaning
that it first decreases with �, and then returns to higher values
when � is too long for dynamic coupling to be retained.
When the time series is noise-free, such � value corresponds
to the global minimum of N and an upper limit to an efficient
selection of time delays, beyond which statistical indepen-
dence reflects dynamic decoupling. Furthermore, it was
shown �8� that using different time delays for consecutive
embedding dimensions is more efficient than using the same
� value for all dimensions, which has been the common ap-
proach to phase space reconstruction by time delay embed-
ding. Hence, the N algorithm will output a vector of different
time delays ��1 ,�2 , . . . ,��m−1��, as incorporated in the defini-
tion of embedding matrix above. In this Brief Report we
extend that nearest neighbor embedding with different time
delays method to multivariate time series, that is, when
1�k�d, by selecting at each iteration the combination of
variable, from the initial set of k variables, and time delay
that first minimizes N. As before �8�, the false nearest neigh-
bors �F� algorithm proposed by Kennel et al. �9� is used to
set the final embedding dimension. This algorithm considers
the ratio of Euclidean distances between each and every
point and its nearest neighbor, first on an m-dimensional and
then on an �m+1�-dimensional space. If the ratio is greater
than a given threshold, these points are referred to as false
nearest neighbors, that is, points that appear to be nearest
neighbors not because of the dynamics, but because the at-
tractor is being viewed in an embedding space too small to
unfold it. When the fraction of F as a function of the embed-
ding dimension decreases to zero, the underlying attractor is
unfolded and m can be optimally estimated.
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lays algorithm for multivariate time series is detailed below.
�i� Consider an initial multivariate time series x�i�k�, i
=1, . . . ,n, of n measurements of k different dynamical vari-
ables. For each variable and for each � being tested, build a
candidate embedding matrix T
for j from 1 to k�
for � from 1 to 1

10n�define T= �x�i,1:k� ,x�i+�,j���
�

�the upper limit for � is chosen arbitrarily�. �ii� For each
�k+1�-dimensional point, that is, for each row in matrix T,
estimate its �k+1�-dimensional nearest neighbor. Calculate
the Euclidean distance between them, dE1. �iii� Consider both
points one sampling unit ahead, still in �k+1�-dimensions,
and calculate the new Euclidean distance between them dE2.
�iv� Estimate the ratio dE2 /dE1 and save the number of dis-
tance ratios larger than 10. That fraction is what is referred to
as N in the � selecting profiles ahead. The threshold value,
though heuristically set, is justified by numerical studies �9�
and has low parametric sensitivity. �v� From the profiles of N
vs � for each of the k variables, select the combination of
variable and time delay that first minimizes N. That should
be the optimal variable j1 and time delay �1 selection for this
first embedding cycle �that is, each iteration that adds an-
other dimension to the candidate embedding matrix�. �vi�
Estimate the percentage of F and save that value as a func-
tion of the dimensionality of the candidate embedding matrix
T. �vii� Build a putative embedding matrix X
= �x�i,1:k� ,x�i+�1,j1��, where 1� j1�k. �viii� Again, for each
variable and � being tested, build a candidate embedding
matrix, now T= �x�i,1:k� ,x�i+�1,j1� ,x�i+�,j��. �ix� Repeat steps �ii�
to �viii�, considering that now points are �k+2�- and more
dimensional. �x� Stop this iterative procedure when the frac-
tion of F �step �vi�� has dropped to 0. The outcome of run-
ning this procedure for as long as necessary to minimize F is
the final m-dimensional embedding matrix: X
= �x�i,1:k� ,x�i+�1,j1� ,x�i+�2,j2� , . . . ,x�i+��m−k�,j�m−k��

�, where ��N

and 1� j�k.
Two bivariate data sets will be used to illustrate the mul-

tivariate extension of the nearest neighbor embedding with
different time delays. The first are the x- and z coordinates
�L�X� and L�Z�, respectively� of the Lorenz system of differ-
ential equations �10� ẋ=��y−x�, ẏ=x��−z�−y, ż=xy−�z,
with parameters �=10, �=28, �=8/3. The equations were
numerically integrated with a fourth- to fifth-order Runge-
Kutta algorithm, sampled at �=0.01 intervals, and transients
were removed. The second data set is composed of two
physiological signals, the heart rate �P�H�� and respiration
�P�R�� from a 49-year-old man diagnosed with sleep apnea,
a potentially life-threatening disorder in which the subject
stops breathing during sleep. The data were extracted from
data set B of the 1991 Santa Fe Time Series Prediction and
Analysis Competition �11�. The variables were digitized at
250 Hz and then sampled at 0.5 second intervals. The units
of the P�H� measurements are beats per minute, while P�R�
is provided in uncalibrated digitization units �see Ref. �11�
for more detailed information on the data set and its prepro-
cessing�. When considering multivariate time series, normal-
ization is a pivotal prerequisite to overcome scale shifts. Ac-

cordingly, we have nonparametrically normalized each
variable separately to its empirical cumulative distribution,
by first sorting all n values and then replacing them by their
rank /n. Each data set, as used in the subsequent analysis,
includes a total of 8000 points, part of which is plotted in
Fig. 1. The section of data set B used in this report includes
both a period of apnea and a period of intermittent apnea.

First, consider the case study of two coordinates of the
Lorenz system. As this is a low-dimensional system, there is
no obvious advantage in using multivariate time series to
reconstruct the phase space. Therefore, this example is used
only to illustrate the multivariate procedure for a well-
described system, where the problems of noise and nonsta-
tionarity, typically encountered in biological data sets, are
absent. The N profiles for selecting � for the first embedding
cycle are displayed in Fig. 2�a�, where the thick line indi-
cates the profile for L�X�, meaning that the candidate matrix
being tested is �L�X��i� ,L�Z��i� ,L�X��i+���, and the thin line
indicates the profile for L�Z�, meaning that the candidate
matrix being tested is �L�X��i� ,L�Z��i� ,L�Z��i+���. The variable
L�X� and the � value of its N profile first minimum �1 are the
optimal combination that is selected from this first embed-
ding cycle �Fig. 2�a�, circle�, which implies that the candi-

FIG. 1. Data sets. Upper panel: the x �L�X�, left� and z �L�Z�,
right� coordinates of the Lorenz system. Lower panel: heart rate
�P�H�, left� and respiration �P�R�, right� signals, in beats per minute
and uncalibrated digitization units, respectively. In the subsequent
analysis, each variable is normalized to its empirical cumulative
distribution.

FIG. 2. �a� First embedding cycle profiles for � selection from
N. The thick line indicates the profile for L�X� and the thin line the
profile for L�Z�. A circle indicates the optimal combination of vari-
able and time delay that is selected from this first cycle. The global
minima of N corresponds to the onset of dynamic decoupling. �b�
The fraction of F as a function of m for the embedding of the
bivariate L�X� and L�Z� time series. See the text for a more com-
prehensive description.
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date embedding matrices that would be tested in a second
embedding cycle would be �L�X��i� ,L�Z��i� ,L�X��i+�1� ,
L�X��i+��� and �L�X��i� ,L�Z��i� ,L�X��i+�1� ,L�Z��i+���. The ratio-
nale for using the first minimum was discussed in Ref. �8�,
where it was shown to be the most efficient choice. Dis-
played in Fig. 2�b� is the fraction of F as a function of m �9�,
from which it can be concluded that the optimal embedding
dimension is m=3, and the final embedding matrix is then
�L�X��i� ,L�Z��i� ,L�X��i+�1��.

Consider now the biological data set. Physiological sys-
tems are typically high-dimensional, nonstationary, and con-
taminated by noise. We have taken no action to correct these
problems, in the sense that we have used the data as given
for the Santa Fe Competition. The � selecting profiles for the
first, second, third, and fourth embedding cycles are dis-
played in Figs. 3�a�–3�d�, respectively, where thick lines in-
dicate the N profiles for P�H� and thin lines indicate the
profiles for P�R�. The candidate embedding matrices
are built in the same way as described in the Lorenz
case study, that is, �P�H��i� , P�R��i� , P�H��i+��� and
�P�H��i� , P�R��i� , P�R��i+��� are the candidate embedding ma-
trices being tested for the first embedding cycle �Fig. 3�a��,
and for the next embedding cycles, the candidate matrices
are built based on the combination of variable and time delay
selected in the previous cycle �Figs. 3�a�–3�d�, arrow�. As
these are noisy profiles �see Ref. �8� for a comparison with
profiles for L�X� contaminated with additive Gaussian white
noise�, the identification of local minima becomes more dif-
ficult and is sometimes balanced with the identification of a
point at which a change in the decaying velocity of the pro-
file occurs. From the second to the fourth embedding cycles
�Figs. 3�b�–3�d��, a peak is visible at previously selected �
values, a feature also present in the noisy profiles reported in
Ref. �8�, which indicates that selecting the same � value
would not only be a suboptimal choice, it would indeed be
the worst possible choice. Displayed in Fig. 3�e� is the frac-

tion of F as a function of m �9�, from which it can
be concluded that the optimal embedding dimension is
m=6, and the final embedding matrix is then �P�H��i� ,
P�R��i� , P�H��i+�1� , P�H��i+�2� , P�R��i+�3� , P�R��i+�4��. The em-
bedding of variables with different oscillatory frequencies,
such as the heart rate P�H� and respiration P�R�, will ini-
tially be biased towards the variable with the higher fre-
quency. This is clearly visible in Fig. 3�a�, with P�H� pre-
senting a substantially lower N profile than that of P�R�.
However, this initial selection of P�H� is increasingly less
advantageous, until the alternative variable P�R� is favored
for the efficiency of the embedding.

The multivariate phase space reconstruction scheme could
have been conceived in different ways, from embedding each
variable separately and then adding them together, to the
proposed iterative selection from an initial set of variables.
The latter is more efficient, in the sense that the final embed-
ding dimension is smaller than when variables are embedded
separately. Such advantage is particularly relevant for mas-
sively multivariate systems, as proteomic time series, for ex-
ample, which include hundreds or even thousands of vari-
ables �12�. Many of these variables will likely have a very
strong correlation among themselves. In that case, the most
efficient phase space reconstruction does not necessarily start
with the concatenation of all variables without a time delay,
as the approach suggested in this Brief Report. Instead, it
should start with a single variable, to which additional vari-
ables, first without any delay, are then added. This small
variation to the proposed algorithm addresses the issue of
sufficient representation in multivariate systems with high
correlation between state variables. It is interesting to note
that the proposed implementation in fact treats each variable
as a surrogate for a delayed representation of the other vari-
ables. This is also particularly well suited for the representa-
tion of dynamic behavior documented by molecular biology
time series for a very pragmatical reason—they tend to be
very short, in the sense that the number of time points is
typically manyfold smaller than the number of variables.

The reverse-engineering of biological processes from the
time series they generate is often approached by parametri-
zation of an explicit mathematical formulation �6�. It can be
argued that this approach is hampered by the lack of explor-
atory tools that analyze the dynamic behavior directly to as-
sist in selecting the most explanatory independent variables.
Furthermore, the characteristic heterogeneity in oscillatory
frequencies, large number of variables, and short sampling
time, creates a particular challenge for approaching this ex-
ploratory analysis through the characterization of a recon-
structed attractor. This report describes an attempt to use the
criteria of efficient time delay embedding to achieve that
goal.
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FIG. 3. �a� First; �b� second; �c� third; and �d� fourth embedding
cycle profiles for � selection from N. Thick lines indicate profiles
for P�H� and thin lines indicate profiles for P�R�. An arrow indi-
cates the optimal combination of variable and time delay selected
from each embedding cycle. From the second �b� to the fourth �d�
embedding cycles, a peak is visible at previously selected � values.
�e� The fraction of F as a function of m for the embedding of the
bivariate P�H� and P�R� time series. See the text for a more com-
prehensive description.
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